Relationship with other projects
bootc is the key component in a broader mission of bootable containers. Here's its relationship to other moving parts.
Relationship with podman
It gets a bit confusing to talk about shipping bootable operating systems in container images. Again, to be clear: we are reusing container images as:
- A build mechanism (including running as a standard OCI container image)
- A transport mechanism
But, actually when a bootc container is booted, podman (or docker, etc.) is not involved.
The storage used for the operating system content is distinct from /var/lib/containers
.
podman image prune --all
will not delete your operating system.
That said, a toplevel goal of bootc is alignment with the https://github.com/containers ecosystem, which includes podman. But more specifically at a technical level, today bootc uses skopeo and hence indirectly containers/image as a way to fetch container images.
This means that bootc automatically also honors many of the knobs available in /etc/containers
- specifically
things like containers-registries.conf.
In other words, if you configure podman
to pull images from your local mirror registry, then bootc
will automatically honor that as well.
The simple way to say it is: A goal of bootc
is to be the bootable-container analogue for podman
, which runs application containers. Everywhere one might run podman
, one could also consider using bootc
.
Relationship with Image Builder (osbuild)
There is a new bootc-image-builder project that is dedicated to the intersection of these two!
Relationship with Kubernetes
Just as podman
does not depend on a Kubernetes API server, bootc
will also not depend on one.
However, there are also plans for bootc
to also understand Kubernetes API types. See configmap/secret support for example.
Perhaps in the future we may actually support some kind of Pod
analogue for representing the host state. Or we may define a CRD which can be used inside and outside of Kubernetes.
Relationship with ostree
OSTree provides many things:
- a git-like repo for OS data from which you can check out an entire rootfs
- a bootloader integration layer
- a transport layer for pulling content over HTTP
With bootc, the OSTree transport layer is not used. Instead, content is pulled
as OCI containers using skopeo
as mentioned above. However, this content
is then imported into the local OSTree repo to perform a deployment checkout.
The role of OSTree may further shrink in the future, especially as tighter
integration with podman and composefs occurs, but it will remain an important
part of the bootc stack (in particular the bootloader integration layer and
management of deployment roots).
Relationship with rpm-ostree
As mentioned above, bootc uses OSTree as a backing model, and so does
rpm-ostree. Hence, when using a container source, rpm-ostree upgrade
and
bootc upgrade
are effectively equivalent; you can use either command.
Differences from rpm-ostree
- The ostree project never tried to have an opinionated "install" mechanism,
but bootc does with
bootc install to-filesystem
- Bootc has additional features such as
/usr/lib/bootc/kargs.d
and logically bound images.
Client side changes
Currently all functionality for client-side changes
such as rpm-ostree install
or rpm-ostree initramfs --enable
continue to work, because of the shared base.
However, as soon as you mutate the system in this way, bootc upgrade
will error out as it will not understand how to upgrade
the system. The bootc project currently takes a relatively
hard stance that system state should come from a container image.
The way kernel argument work also uses ostree on the backend
in both cases, so using e.g. rpm-ostree kargs
will also work
on a system updating via bootc.
Overall, rpm-ostree is used in several important projects and will continue to be maintained for many years to come.
However, for use cases which want a "pure" image based model,
using bootc
will be more appealing. bootc also does not
e.g. drag in dependencies on libdnf
and the RPM stack.
bootc also has the benefit of starting as a pure Rust project; and while it doesn't have an IPC mechanism today, the surface of such an API will be significantly smaller.
Further, bootc does aim to include some of the functionality of zincati.
But all this said: It will be supported to use both bootc and rpm-ostree together; they are not exclusive.
For example, bootc status
at least will still function even if packages are layered.
Future bootc <-> podman binding
All the above said, it is likely that at some point bootc will switch to hard binding with podman. This will reduce the role of ostree, and hence break compatibility with rpm-ostree. When such work lands, we will still support at least a "one way" transition from an ostree backend. But once this happens there are no plans to teach rpm-ostree to use podman too.
Relationship with Fedora CoreOS (and Silverblue, etc.)
Per above, it is a toplevel goal to support a seamless, transactional update from existing OSTree based systems, which includes these Fedora derivatives.
For Fedora CoreOS specifically, see this tracker issue.
See also OstreeNativeContainerStable.